Electric autonomous vehicles (EAVs) take advantage of the operational efficiency enabled by connected and autonomous vehicle technologies and the energy efficiency and environmental benefits associated with battery electric vehicles. Autonomous vehicles can avoid accidents caused by human errors, reduce land use for parking, and thus are expected to have wide-spread applications as personal vehicles, taxis and transit fleet. Using battery electric vehicles, which operate at high efficiency and produce zero tailpipe emissions, in the autonomous vehicle fleet will reduce greenhouse gas emissions and other harmful pollutants in highly populated areas, thus providing a sustainable solution to urban transportation service.

This workshop focuses on the planning and operations of EAVs, as well as the policy implications. Three main topic areas related to EAV technology are covered: travel demand and behavior, operations and simulation, and policy implications. Topics of specific interest include, but are not limited to:

- Simulation of EAVs
- Shared EAVs
- Optimizing EAV fleet operations
- Ecological adaptive cruise control
- Environmental and economic impact analysis of EAVs
- Market analysis of EAV technology

Organizers

Jing Dong, PhD
Department of Civil, Construction and Environmental Engineering
Iowa State University
Town Engineering Building, Room 350
813 Bissell Road
Ames, IA 50011-1066
Phone: (515) 294-3957
E-mail: jingdong@iastate.edu

Zhenhong Lin, PhD
National Transportation Research Center
Oak Ridge National Laboratory
2360 Chelahala Blvd
Knoxville, TN 37932
Phone: (865) 946-1308
Email: linz@ornl.gov